Novel Potentials for
the Simulation of Polyethylene
and other Polymeric Systems

by
George Waksman
Submitted to the Department of Materials
Science and Engineering in Partial
Fulfillment of the Requirements for the
Degree of
Bachelor of Science
at the
Massachusetts Institute of Technology

May 2005

©2005 George Waksman
All rights reserved

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in whole or in part.

Signature of AUthOr ...
Department of Materials Science and Engineering
May 13, 2005

Certified DY ..o
David K. Roylance

Associate Professor of Materials Engineering
Thesis Supervisor

ACCEPIEA DY oot e

Donald R. Sadoway
John F. Elliot Professor of Materials Chemistry
Chairman, Undergraduate Thesis Committee

Table of Contents

TaAbIE OFf CONTENTS.....ccciiiiiiieiiii et e et e e e et eeeeaae e e e eenaaeeeeennneeeeas 2
YN o115 ¢ o1 TSSO 4
13110 2RSSR 4
(€153 1155 -1 TSRS PRP 4
[0)(a 1<) S O RPN 6

(0 ¢4 1< G TSRO 7
OFAET 2 oo e e e e et e e et e e e et e e e et e e e e e araeeeeanes 8
(046 1< G TSR R U PRI 9
EXTEISIONS ...ttt et e ettt e e e et e e e eeaaeeeeeeateeeeeeaneeeeeeareeeeenaneeeeeanes 9
Polypropylene, polybutylene, €tC.........cceeviiiiriieeiiieeiie et 10
PolyVINYIChIOTIACeiiiiiiieiii et 10
POLYACELYIENEeeeeiieeeeeee et et 10

ANY POLYIMET ...ttt ettt ettt et s teesbe e s sbeebeesabeens 11

1038 0) (31013 01 7 1510) ARSI 11
GOINETAL.......vieiiieeeeee ettt e e e e e et e e e e e e e e e e e etae e e e e e araeeeentreeeaaan 11

J NES) Yo 5 10) 1 1TSS 13
OFACT O ..t e e e et e e e et e e e e e tr e e e e eetaeeeeeetreeeeenaeeaean 13

(0 ¢4 1< G OSSPSR 14
OFACT 2 .t e e e e et e e e ettt e e e e e tr e e e e eeateeeeeetreeeeenaraaean 15

(0] ¢4 1< G SO 16
Temporal INtEEIationcccueeiiieiieiieeieeeie ettt ettt ebeesaaeenbeeeee 16
Temperature Regulation..........c.ccooiiieiiiiiiiiecccce e 17
Boundary Conditionscueecuieriieriienieeieeie ettt ettt e e eseesnseensee e 17
INItIAl CONAITIONS ..vvvviiiiiiiieiiieiieee ettt e e e e e e et e e e e e e e s esssbaarereeeeeesseanes 17
RESULLS ... ettt e e ettt e e e et e e e e aaeeeeetaeeeeeetaeeeeenreas 18
FULUIE RESEATCH ...t e e e e e e 18
APPendixX A: REEIENCESccviiiiiiiieiiecie ettt ettt ens 19
Appendix B: EQUAtIONSccuviiiiiiiciicecie ettt e s 20
GOINETAL.......vviiiieeeeee et e et e ettt e e e et e e e e et e e e e etraeeeeetraeeaaan 20

AV 23 ST 1) (<SSP 20
CommOon EQUAtIONS.cccuiiiiiiiieiie ettt ettt ettt et e ae e esnseeneeas 20
Order 0 INTEIaCIONS ...oooevevieiiiec ettt e et e e e e eee e e e e e e s eeaataeeeeeeesseesnnraaeeeas 20
Interaction POtential.............cooviiiiiiiiiiiiiiie e 20
Order 1 INTEIaCIONS ...oooeveeieeiieee ettt ettt e e e e e et e e e e e e s et aeeeeeeeeseesnnrreneeas 20
Interaction POtential.............cooviiiiiiiiiiiiiiie e 20
()46 1S QA 7<) ¢:1o15 10) 1 - IR SRR 20
Interaction POtential.............cooviiiiiiiiiiiiiiie e 20
ConStaANt DETIVALIONoovveiiiiiiiii ettt e e e e e et e e e e e s eseesabrareeeeeeesennnes 21
Order 3 INTEIACTIONSvveiiieiieeeeeciieeeeeeeee ettt eeeete e e e et e e e eeaeeeeeeeaaeeeeeeiareeeeeearreeeennes 21
Interaction Potential.........cccuvvviiiiiiiiiiiee e 21
ConStant DEIIVALIONcoovviieiieiiieeeeeieee e eeeee e et eeeete e e e et eeeeetaeeeeeeareeeeenaneeeeas 21
APPENAIX C: CONSTANES ...eecuiiieeiiieeiieecieeesteeeeteeesteeesteeesaeeessaeesssseeessseesseeesssaeesseeesseens 22
Order O INTEIACTIONSeeeiievieeeeeiieeeeeeee e ettt eeeere e e e et e e e eetaeeeeeeaaeeeeeeareeeeeearreeeeenes 22
Order 1 INTEIaCIONS ...oooceveiieeiiee ettt e e e e et e e e e e e e e eaaraeeeeeeeeseesnnraaneeas 22

Order 2 INTETACTIONS ...oooeeeeeeieeeeee e 22

() 6 1S QR 7<) 2 1o15 10) 1 T-JPRE SRR 22
APPENAIX D2 FIGUIES...cuuviiiiiiiiieiieeiie ettt ettt ettt ttesaeesaeesabeeseesnseeseesnseens 23
A Yo 10) 1 1TSS 23
ConStant DEIIVALIONS.cooiurieeeeirieeeeeitteeeeeetee e e eeeaeeeeeetreeeeeeaaeeeeeeaaeeeeeeisreeeeeerreeeeanes 24
Order 2 INTEIACTIONS ..coovevevieiiieeee ettt e ettt e e e e e e et e e e e e e s eessabeaeeeeeeeesennnes 24
Order 3 INTEIACTIONSveeeeeiiieeeeeiieeeeeeie et eee e eeet e e e e tr e e e e eetaeeeeeeareeeeenaneeeeas 25
Yo7 5 (o) o RO RSP 26
Appendix E: Implementation Codecccueerieeiienieeiiieiieeieeeieeie et ens 39
3 (710 (<) ¢ RO RRRRRRRRN 39
DIESCIIPTION ...ttt ettt ettt ettt et et e et e et e e bt e s sbeeteeeabeenseessseenseesnseenseannns 39
oY [OOSR 39
MAKEOULTILE ...vveiiieiieie et e e e et e et e e e eeaaaeeean 40
D JTYer)01 51) s WSS 40
COAC ettt e e e et e e e e e etre e e e e araaaean 40

F1 011 2 Vot SRR SRR 48
DIESCIIPIION ...ttt ettt ettt ettt e st e et e et e e bt e ssbeeteeeaaeenbeensseenseesnseenseannns 48
oY [T RRRRRRRRN 48
AUMIZIT L. e e e e ettt e e e et e e e e e trt e e e eearaeeaaaa 56
D JTYer)01 51) s WSS 56
COAC et e e e e et e e e e e et e e eaaraaean 56
21010122010 RSP PPPRRUPPPSRN 57
DIESCIIPTION ...ttt ettt ettt et e st e et e st e e bt e ssbeeteesaaeenbeensseenseesnseenseannns 57
oY [T OSSPSR 57

Abstract

Throughout the history of science, people have been developing models to explain
reality. The advent of computer technology has made it possible to devise and implement
incredibly complicated numerical models in a relatively short period of time; for
example, three-body problems, impossible to solve analytically, becomes trivial to model
with computers. Beyond three-body problems, computers have been instrumental in
solving many-body problems, such as those encountered in the atomic interactions within
materials. Since computer modeling of atomic systems does not predate computers, it is
still in its childhood, requiring further investigations. In order to further the development
of computer modeling and a general understanding of reality, novel model algorithms for
the simulation of polymeric systems have been developed. The proposed algorithms are
empirical in nature, having been derived from observed atomic and molecular behavior,
owing little to subatomic theories. The algorithms were developed to model polyethylene
but extensions are provided to allow possible generalization to any other polymeric

system.

Theory

General
The nature of molecular and atomic interactions is an incredibly complicated

affair, currently best understood through the theories of quantum mechanics. Since
quantum mechanics requires complex, continuous functions, which are very difficult to
efficiently model on a computer, semi-empirical approximations of these interactions can
be used in their place. Discrete element mechanics simulations of molecular and atomic

interactions, often referred to as molecular dynamics simulations, can be conducted by

taking each atom to be a discrete simulation element. Thus taking each atom as a discrete
element, the internuclear and electron interactions can be approximated using equations
that are computationally simpler than the equations of quantum mechanics.

A common approximation used to simplify simulation is to remove the hydrogen
atoms from the system, thereby greatly decreasing the simulation size. Different methods
are used in order to account for the discrepancies introduced by the removal of the
hydrogen atoms, such as changing the shape or arrangement of the carbon atoms to act as
-CHa- structures. While this approximation saves computation time, it is not a part of the
model presented in this paper as it makes for a less physically real system

In order to construct computationally reasonable approximations for the
interactions that occur within polyethylene, it is necessary to break the interactions down
into simple interactions between just a few atoms. These simple interactions, when
combined in parallel serve as approximations for the entire system. In molecular
dynamics simulations, the complexity and processing time increase at a greater and
greater rate with regard to the number of atoms in a system when the number of atoms
involved in a given interaction increases (computation goes as n squared for two body
interaction, n cubed for three body interactions and so on). Resulting from the complexity
and processing time increases, the model presented in this paper has the requirement that
all interactions be between no more than two atoms at once. In order to further keep
interaction complexity down, interactions are constructed of polynomials of the least
possible complexity.

The remaining consideration of how to break down the complex interactions

within polyethylene into a number of simple interactions between pairs of atoms involves

the addition of the concept of interaction order. Interaction order, put simply, is defined
by the number of covalent bonds that exist between two atoms. Thusly, two non-bonded
atoms interact using order 0 interactions; two atoms directly bonded to each other interact
using order 1 interactions; two atoms each bonded to the same atom but not each other
interact using order 2 interactions and so on. Using this system of interaction order,
algorithms for polyethylene simulation are presented with examples of systems for which
a given interaction order is more characteristic. For the model presented in this paper
atoms separated by more than 3 covalent bonds are considered infinitely far apart and

interact using order O interactions.

Order O

Order 0, or non-bonded, interactions in polyethylene need to account for steric
interactions between hydrogen and carbon atoms. The hydrogen and carbon atoms within
a polyethylene molecule are, roughly speaking, neutrally charged and thus interact only
through induced dipole moments and electron shell repulsion. Since induced dipole
moments and electron shell repulsion are the dominant forces in argon interactions, a
system of argon gas is an ideal system to explore the order O interactions within
polyethylene.

Induced dipole, also known as Van Der Waal’s, interactions are attractive
interactions that become stronger at shorter distances and diminish quickly as distance
increases. Electron shell repulsion is a repulsive interaction that becomes incredibly
strong at very short distances and diminishes to nearly zero almost immediately upon
separation. These forms of interactions are well known and were modeled well before the

advent of computers. One of the simplest, and most common, methods of simulating

these interactions is to use an algorithm based on the Lennard-Jones model for argon gas.
Since the Lennard-Jones algorithms are based on argon gas models and O order
interactions of polyethylene have been likened to the interactions of argon gas, we can
simply change the constants and use the same algorithms. A Lennard-Jones 6-12
interaction is chosen because those in which the higher order term is the square of the

lower order term decrease the number of necessary operations to obtain potentials.

Order 1

Order 1 interactions in polyethylene are the direct interactions between covalently
bonded atoms. All of the bonds in polyethylene (hydrogen-carbon and carbon-carbon) are
sigma bonds and are roughly equivalent to any other sigma bond in any other covalent
material. In order to look at a simpler system when developing the algorithms for order 1
interactions in polyethylene, we will take a system in which interactions are dominated
by order 0 and order 1 interactions. Gaseous, molecular hydrogen is a system dominated
by order 1 interactions. The interactions between hydrogen molecules are essentially
explained using the above order 0 interaction and thus the issue need not be belabored.

The sigma bond in molecular hydrogen is a bond that has been approximated
rather accurately using quantum mechanics and molecular orbital theory. The
approximated description of the sigma bond, so derived, is computational more complex
than desired and so simplifications are sought. Since the strength of sigma bonds is
substantially greater than the strength of Van Der Waal’s interactions, if we impose the
criteria that no bonds will be broken, we only need to approximate the sigma bond within
a small region around equilibrium bond lengths. Near equilibrium, the potential of a

sigma bond can be approximated quite accurately using a simple parabola. The use of a

parabola to represent a sigma bond is the same as considering a sigma bond to be a
Hookean spring. The Hookean spring approximation for covalent bonds is fairly common

and fits experimental results quite well.

Order 2

Order 2 interactions in polyethylene are those that arise from bond angle
restrictions. Bond angle restrictions in polyethylene are very nearly identical to those in
methane and arise from the sp3 hybridization of a saturated carbon atom. Since the sp3
hybridization in methane and polyethylene are nearly identical, we will investigate
methane and then apply results to polyethylene.

Since we are trying to maintain bond angle, it would be intuitive to construct a
three body potential and use cross products, bond lengths and the law of cosines to
determine the angle and then write a potential based on the calculated angle. A simple but
effective potential based on bond angle, would be one that is parabolic around the
equilibrium angle. Parabolic potentials with regard to bond angle have been used in the
past and backed up with experimental information.

Sadly, intuition leads us to a potential that does not satisfy our design requirement
for purely polynomial two body potentials. In order to satisfy the design requirements a
simpler potential was developed. If we make the assumption that all order 1 bonds will be
near equilibrium, single bonds are of similar length and use the small angle
approximation for sine, we can derive an equation which relates distance between atoms
to bond angle. Having a relation between distance and bond angle, we can take a

potential that is parabolic in bond angle and construct a simple potential in atomic

distance for two atoms. The Hookean spring was chosen to serve as the order 2

interaction potential.

Order 3

Order 3 interactions in polyethylene exist to account for torsional energy. In
simpler simulations it is likely acceptable to ignore torsional energy terms as steric
hindrance will minimize carbon-carbon eclipsing effects, however for completeness, we
will address torsional effects to prevent hydrogen-hydrogen eclipsing and more
accurately describe carbon-carbon eclipsing. Since torsional effects are first (by number
of carbons) observed in ethane, we will take it to be our model.

In much the same way as with our order 2 interaction, a relation between bond
angle and atomic distance is derived to prevent a need for many-body potentials. Unlike,
the order 2 interaction, we can not use a parabolic potential or we will prevent torsion
altogether. Instead, a repulsive potential is used to discourage eclipsed conformations. By
maximizing repulsion at times when atoms are eclipsed and minimizing repulsion when

they are staggered, the desired torsional effects are accomplished

Extensions
Through the modification of some of the parameters and constants used in the

model of polyethylene it is possible to simulate other polymeric systems. With the further
addition of a few new interactions it becomes theoretically possible to simulate any
polymeric system. Such possible extensions on the simulation of polyethylene are

presented here.

Polypropylene, polybutylene, etc.
Polypropylene, polybutylene, polyisopropylethylene and any other saturated

hydrocarbon polymer may be easily simulated using the proposed algorithms without
modification. Some modification of constants might be necessary to accommodate
changes in order 2 interactions around carbons bonded to more than two other carbons

but the algorithms should need no alteration.

Polyvinylchloride

In polyvinylchloride, the assumption that all species are neutrally charged is no
longer valid. The chlorine atom, being more electronegative, draws electron density away
from the rest of the molecule. In order to account for the differences in electron density, it
would be necessary to introduce a new order 0 interaction. The interaction, meant to deal
with charge differences, could be a simple, parabolic, Coulombic potential. Every species
within the system would need to be assigned a partial charge, adding another set of

constants to the simulation.

Polyacetylene
Polyacetylene being a stereotypical, conjugated, unsaturated hydrocarbon

introduces the difficulty of multiple bonds. Adding multiple bonds changes the nature of
the order 1, order 2 and order 3 interactions in the system. The order 1 and order 2
interaction changes are trivial and simply require the adjustment of constants.

The order 3 interaction necessary to simulate polyacetylene is not trivial and must
be created to prevent torsion around the double bond. It may be the case that a narrow
parabola, as was avoided in the polyethylene order 3 interaction, could achieve the
desired prevention of torsion but it might overwhelm other interactions within the system

and the matter requires further investigation.

10

That polyacetylene is a conjugated polymer introduces yet another order 3
difficulty. If the polyacetylene is described using alternating single and double bonds, the
single bonds will allow free-rotation, which does not happen in a conjugated system. This
problem may be solvable by treating single bonds (or all carbon-carbon bonds) as double

bonds and adjusting constants accordingly.

Any Polymer

Using the base algorithms and the suggested extensions, it should be possible to
simulate any polymeric system and some covalent and ionic systems. All that will be
required is adjustment of various constants and initial conditions. The addition of
solvents is easily accomplished by treating solvents in the same manner as polymers.

The inclusion of interacting species is outside the scope of these algorithms and
would require more complex extensions than those provide.

The presented algorithms for polyethylene are meant to be viewed both for their
value in simulating saturated hydrocarbons and for their possible use as the groundwork

for more complex polymer simulation.

Implementation

General
New software was developed specifically for the purposes of implementing the

newly devised algorithms. The software was written using the C programming language
in a manner meant to be compatible with all current operating systems. Software was
developed to provide output from the simulations in both human readable formats and in
a format that could be used by the free software tool POV-Ray to generate still images.

The developed software was fairly slim in features and power, designed to serve as a

11

platform for testing the algorithms and not to replace pre-existing molecular dynamics
packages. After the software was developed, the algorithms were implemented in a
bottom up manner; implementing interactions one order at a time and then moving on.

Due to time constraints, correlation between experimental results and simulated
results could not be conducted in any quantitative manner. Simulation was compared to
theory and experiment on a qualitative basis. As a result of the lack of quantitative
comparison many of the constants used are drawn from literature or have been chosen for
simulation specific reasons. If further research is to be conducted, an important step will
be comparison to experimental results and modification of simulation constants. Since
this model deals with interactions up to order 3, a good place to start would be with a
comparison between simulated and experimental data with regards to ethane.

Design and selection of constants was conducted first by drawing straight from
literature when possible. When not possible to draw straight from literature, some
constants were drawn from literature and theoretically modified. Other constants were
intuited using similar values from literature or rough ideas of what was going on. After
constants were initially devised, some were modified and tweaked in order to attain
values that would prevent the system from “blowing up”. If a constant is of a sufficiently
inappropriate value, in some cases atoms would be forced into positions of incredibly
high potential, from which they would be shot out at very high forces cause the system to
“blow up”

The test implementation’s source code is provided in Appendix E:

Implementation Code.

12

Interactions

Order O

Order 0 interactions are both the easiest to implement and the most computational
intensive. With more complicated implementation schemes, computational power can be
saved but, due to the test platform nature of the software system, order 0 interactions
became the limiting factor in simulation size. Each atom is interacted with each other
atom once per time step, resulting in a number of pair-wise interactions approximately

equal to the number of atoms in the system squared per time step.

Neighbor Lists

In order to speed up calculations, a system of neighbor lists was implemented. In
a neighbor list system all atoms near a given atom are recorded in a list. Instead of
interacting said given atom with all other atoms, it is interacted only with those atoms on
its list. To generate the neighbor list one must compare every possible pair of atoms to
see if they are within a specific cutoff distance of each other, which still takes a
substantial amount of time but, since this calculation can be done every few time steps,
time is saved overall. The neighbor list method for optimizing order O interactions is a
very simple one and more complex ones could be used, such as by partitioning space into

a binary tree or by any of many methods commonly used in discrete element simulations.

Constants

The Lennard-Jones equation has two constants; ¢ and €. ¢ represents the lowest
energy distance between the two atoms. € represents the depth of the potential well
between the two atoms; the difference in potential between minimum energy and infinite

distance.

13

c
o is taken to be the sum of the radii of the two atoms as taken from literature.

&
€ 1s taken to be the square root of the product of the € values for the two

interacting atom types. Values for & for hydrogen and carbon could not be located in
literature and were devised based on values of ¢ for other materials and then adjusted to
allow the system to work well. € values were taken to be similar to those used for argon
simulation in literature. The nature of the method for choosing the value for € is not
perfect and further research should be conducted to obtain better values. A side effect of
the uncertainty of the value of ¢ is that the intermolecular and entropic forces (strongly

influenced by order 0 interactions) will not be entirely accurate.

Order 1

Order 1 interactions were implemented by setting atomic bonds during the initial
set up and then maintaining a list of bonded pairs. These bonded pairs were then

interacted every time step.

Constants
Hookean spring systems have two constants, x0 and k. x0 represents the

equilibrium distance between spring ends; equilibrium bond length in our system. k—
represented as kO to prevent confusion with the often used counter variable k in the

software code—represents the stiffness of the spring.

x0
x0 was taken to be the equilibrium bond lengths for carbon-carbon and carbon-

hydrogen bonds in ethane from literature.

14

k0

kO was taken to be the bond stiffness for carbon-carbon and carbon-hydrogen

bonds in ethane from literature.

Order 2

Order 2 interactions were implemented by traversing the atomic bonds set aside
for order 1 interactions to find pairs of atoms separated by one intermediary atom. These

pairs were then interacted

Constants
Since order 2 interactions are modeled as Hookean springs, they have the same

constants as the order 1 interactions.

x0

Using the equilibrium bond lengths for single bonds from literature, the
equilibrium bond angles from literature and the law of cosines, values for x0 were

calculated.

k0

Since kO is only indirectly related to bond angle stiffness and has been devised to
serve an approximation unique to these algorithms a value had to be intuited and worked
out through trial and error. The value for kO had to be large enough to maintain a fairly
tetrahedral arrangement around a carbon atom and small enough not to heavily alter the
order 1 interactions. Due to the use of angles and the law of cosines, the affect of
changing one of the single bonds does not affect the order 2 distance much, minimizing

back effects of the order 2 interaction on order 1 constants.

15

Order 3

Order 3 interactions were implemented in much the same way as order 2

interactions, by traversing order 1 bonds.

Constants
The order 3 interactions use two constants x0 and z. The order 3 x0 is not like the

x0 of order 1 or 2; the order 3 x0 represents the distance between two atoms when they
are in a completely eclipsed configuration. The constant z is a scalar variable that
represents the energy change from the completely eclipsed position and the staggered
position. Both of these constants have been derived geometrically from experimental

values.

x0

Using equilibrium bond lengths, equilibrium bond angles and geometry, values

for x0 were calculated.

4
By calculating the distance between atoms in the staggered position using

equilibrium bond lengths, equilibrium bond angles, geometry and combining with values

for x0 and experimental values for the change in energy, values for z were calculated

Temporal Integration
The Velocity Verlet algorithm was chosen as the method for time integration for a

number of reasons. The Velocity Verlet algorithm is a fairly simple algorithm that is not
very computationally intensive and is fairly stable. A further advantage to using the
Velocity Verlet algorithm is that it is a conservative algorithm, neither introducing nor

destroying energy in its integrations.

16

Time steps were conducted at a rate of one step per femtosecond. This choice was
made because atomic bond oscillations are on the order of femtoseconds and early
simulation runs had a strong tendency to “blow up” when time steps were performed less

often.

Temperature Regulation
In order to deal with minor program limitations and minimize a number of minor

problems in the implementation, an algorithm was devised to maintain a roughly constant
system temperature. The temperature was calculated during every time step and the
velocity of every atom in the system was adjusted by the square root of the ratio of
temperature and desired temperature. Through this algorithm, conservation of system
energy was lost but it made the simulations substantially more stable and helped to

eliminate accidental sources of energy imparted by the initial conditions.

Boundary Conditions
Periodic boundary conditions were chosen because of their ease of

implementation and physical simplicity. By using periodic boundaries, the issue of what
to do when an atom approaches or crosses a boundary becomes trivial; the atom simply
appears on the opposite side of the system. Since the system becomes periodic, it can be
considered to repeat ad infinitum, theoretically representing a uniform bulk system, with

measurable local properties.

Initial Conditions
The issue of initial conditions is a very complicated one and can have profound

effects on the results of simulations. Because periodic arrangements are easiest to

enumerate, systems consisting of long stretched chains of polyethylene were designed. In

17

these systems, each atom was given a random initial velocity vector and the system

velocities were normalized to specified temperature.

Results

Although not quantitative, very promising qualitative results have been obtained.
Bond lengths were maintained, though some variation occurred as energy was stored in
bond oscillations. Tetrahedral arrangements around carbon atoms were maintained, with
some variance also due to oscillatory energy storage. Entropic chain contractions were
observed. Condensation of long chains was seen to take place very rapidly. For more

qualitative results, see Appendix D: Figures.

Future Research

There are two primary areas for future research with regards to the model and
algorithms presented in this paper. The first is improvements to the model and the second
is improvements to the implementation.

There are a number of possible improvements to the model. A first such
improvement is to correlate the constants used in the equations with experimental data. A
second would be to devise and implement some of the extensions suggested for
simulating other polymers.

As for improvements to the implementation, there are many, primarily centered
on improving speed and system size. Improvements could be made to the individual
algorithms for each interaction. The software could be cleared of unnecessary
computations. The system could be broken down spatially as a replacement for neighbor
lists. By far the best improvement would be seen by making the software highly parallel

and using multiple computers/multi-processor computers.

18

Appendix A: References

Lennard-Jones, J. E. On the Determination of Molecular Fields. II. From the Equation of
State of a Gas. Proceedings of the Royal Society of London, Series A, 1924,
v106, p463.

Rahman, A. Correlations in the Motion of Liquid Argon. Physical Review, 1964, v136,
pA405.

Verlet, L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties
of Lennard-Jones Molecules. Physical Review, 1967, v159, p98.

Padding, J. T.; Briels, W. J. Uncrossability Constraints in Mesoscopic Polymer Melt
Simulations: Non-Rouse Behavior of Cj30Hz4,. Journal of Chemical Physics,
2001, v115, p2846.

Halley, J. W.; Duan, Y.; Nielsen, B. Simulation of Polyethylene Oxide: Improved
Structure Using Better Models for Hydrogen and Flexible Walls. Journal of
Chemical Physics, 2001, v115, p3957.

Lin, B.; Boinske, P. T.; Halley, J.W. A Molecular Dynamics Model of the Amorphous
Regions of Polyethylene Oxide. Journal of Chemical Physics, 1996, v105, p1668.

Guo, H. X.; Yang, X. Z.; Li, T. Molecular Dynamics Study of the Behavior of a Single
Long Chain of Polyethylene on a Solid Surface. Pysical Review E, 2000, v61,
p4185.

Weber, T. A.; Helfand, E. Molecular Dynamics Simulation of Polymers. 1. Structure.
Journal of Chemical Physics, 1979, v71, p4760.

Krishna Pant, P. V.; Han, J.; Smith, G. D.; Boyd, R. H. A Molecular Dynamics
Simulation of Polyethylene. Journal of Chemical Physics, 1993, v99, p597.

Bharadwaj, R. K.; Boyd, R. H. Effect of Pressure of Conformational Dynamics in
Polyethylene: A Molecular Dynamics Simulation Study. Macromolecules, 2000,
v33, p5897.

Lide, D. R. Editor. CRC Handbook of Chemisty and Physics, 80" Edition. CRC Press,
1999.

Wade, L. G. Organic Chemistry, 4™ Edition. Prentice Hall, 1999.

19

Appendix B: Equations

General

Variables

These variables are used throughout Appendix B
r = displacement from one atom to another
r = distance from one atom to another

U = potential energy generated between two atoms
f = force exerted on one atom by the potential field

Common Equations

These equations will be used throughout Appendix B

Order O Interactions

Interaction Potential

Order 1 Interactions

Interaction Potential

1 2
U =—kO(r — x0
! kofr—0)

f= —k0(r — Xojr
r

Order 2 Interactions

Interaction Potential

1 2
U =—kO(r — x0
! Kofr—0)

20

Constant Derivation

The variables and geometries used for derivation of constants are in Appendix D: Figures
X0 = \/a2 +b? —2abcos(C)

Order 3 Interactions

Interaction Potential

X0?
U=z o
2
1?:22)(04 r
r

Constant Derivation

The variables and geometries used for derivation of constants are in Appendix D: Figures
I =acos(A)+b+ccos(C)

X0 = /I” + (asin(A) — csin(C))’
f, =a’(1-cos(F,))
f, =c?(1-cos(F,))

2
P:\/X02 +[%} — X0

21

Appendix C: Constants

Order O Interactions

Atom Type Sigma (A) Epsilon (J)

Argon (for comparison) 34 1.66e-21

Carbon 0.77 1.00e-21

Hydrogen 0.32 1.00e-21
Order 1 Interactions

Bond x0 (A) k0 (N/m)

C-H 1.12 483

C-C 1.53 450
Order 2 Interactions

Angle Type x0 (A) kO (N/m)

H-C-H 1.83 10

H-C-C 2.18 10

C-C-C 2.50 10
Order 3 Interactions

Interaction Type x0 (A) z(J)

H-C-C-H 2.278 1.196e-19

H-C-C-C 2.446 1.117e-19

C-C-C-C 2.551 1.330e-19

22

Appendix D: Figures

Interactions

order \Z’%

Crder 2

Crder a4

23

Constant Derivations

Order 2 Interactions

24

Order 3 Interactions

25

In action

Here is a single chain of C,9Hao; starting from a stretched state. Each image represents
the passage of 0.01ns. The simulation took place at 273K. The green bar represents 1nm.

26

27

Here is a single chain of Cy900Hgoo, interacting at 350K, starting, again, from a stretched
state. Here every frame is 0.1ns. The green bar again represents 1nm. The color contrasts
and atom sizes may make it difficult to make out but some can be inferred from the
hydrogen (white speck) positions.

28

29

30

31

32

33

34

35

36

37

38

Appendix E: Implementation Code

An apology must be made for breaks in lines of code that have been introduced by their
inclusion in a formatted document

Headers

Description
There are a number of files containing information and data structures that must be

common to all of the various applications. These are put separately in C header files for
convenience.

Code

atoms.h
#ifndef _atoms_h_
#define _atoms_h_
#include ""types.h"
#define NUMBONDS 4
typedef struct
{

enum AtomTypes type;

double x,y,z;

double vx,vy,vz;

double ax,ay,az;

double potential,newpotential;
double ndx,ndy,ndz;

int bonds[NUMBONDS] ;
} Atom;

#endiF

header.h

#ifndef _header_h
#define _header_h
typedef struct

{

int iterations;
double mincutoff;
double dt;
double bigX,bigY,bigZ;
double desiredT;
double T;
int numatoms;

} Headerinfo;

#endif

types.h
#ifndef _types h_
#define _types h_
typedef struct
{

const char* symbol;
double epsilon;
double radius;
double mass;

const char* pigment;

} AtomType;

enum AtomTypes {fake, C, H};

const AtomType elements[] = {
{''fake", 1.0, 0.2, 0.1, "White"},
{'C", 1.0E-21, 0.77E-10, 1.994E-26, "Gray20"},
{"H", 1.0E-21, 0.32E-10, 1.673E-27, "White"}

¥
#endif
makeoutfile
Description

The makeoutfile application is a program that creates an input file to be used by the
interact application. It will create a system containing a number of strands of
polyethylene at 273K.

Code

makeoutfile.h

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include "atoms.h"
#include *"header.h"

#define XMUL 1
#define YMUL 1
#define ZMUL 1
#define N 2000

#define TEMP 350.0

const double sqrt2 = 1.4142135623730950488016887242097;
const double sqrt3 = 1.7320508075688772935274463415059;
const double kB = 1.380658E-23;

const double RMo2 = (double)RAND _MAX / 2.0;

int mainQ)

Headerinfo tempheader;
Atom* allatoms;

int currentatom;

int numatoms;

FILE* file;

int i,j,k,1,n;

double currentT;

double vMul;

double netmx,netmy,netmz;
double a;

file = fopen(infile.atm™, "wb');
if(file == NULL)
{

printf("'Failed to open infile.atm for writing\n\n");
exit(6);
b

numatoms = (2+6*N)*XMUL*YMUL*ZMUL ;

allatoms = (Atom*)malloc(numatoms*sizeof(Atom));
if(allatoms == NULL)
{

printf(*"'unable to allocate memory for allatoms\n\n');
fclose(file);
exit(5);

/*srand((unsigned int)time(NULL));*/
srand(2197);

a = (elements[(enum AtomTypes)H].radius + elements[(enum AtomTypes)C].radius) *
2.0 / sqrt3;

netmx = netmy = netmz = 0.0;

currentT = 0.0;

tempheader . iterations = 1000000;

tempheader.mincutoff = 10.0 * a;

tempheader.dt = 1.0E-15;

tempheader.bigX = a + 3.2 * (double)XMUL * a + a*(double)N;
tempheader.bigY a 2.4 * (double)YMUL * a + a*(double)N;
tempheader. bng 3.8 * (double)ZMUL * a + a*(double)N;
tempheader.T = TEMP-
tempheader.desiredT
tempheader .numatoms

+ +

TEMP;
numatoms;

currentatom = 0;
Ffor(i=0; i<XMUL; i++)

for(J=0; j<YMUL; j++)
for(k=0; k<ZMUL; k++)
{

allatoms[currentatom] .type = C;

allatoms[currentatom].x = 2.0 * a + 3.2 * (double)i * a;

allatoms[currentatom].y = 2.0 * a + 2.4 * (double)j * a;

allatoms[currentatom].z = 2.0 * a + 3. 8 * (double)k * a +
0.25 * a * (double)N;

allatoms[currentatom].vx = ((double)rand()-RMo2)/RMo2;

allatoms[currentatom].vy = ((double)rand()-RMo2)/RMo2;

allatoms[currentatom].vz = ((double)rand()-RMo2)/RMo2;

allatoms[currentatom].ax = 0.0;

allatoms[currentatom].ay = 0.0;

allatoms[currentatom].az = 0.0;

allatoms[currentatom].ndx = 0.0;

allatoms[currentatom].ndy = 0.0;

allatoms[currentatom].ndz = 0.0;

al latoms[currentatom] .potential = 0.0;

allatoms[currentatom] .newpotential = 0. 0;

for(1=0; I<NUMBONDS; I++) allatoms[currentatom].bonds[I] =
0;

allatoms[currentatom] .bonds[0] = 1;

allatoms[currentatom] .bonds[1] = 2;

allatoms[currentatom].bonds[2] = 3;

allatoms[currentatom] .bonds[3] = 4;

currentT += 0.5 * elements[allatoms[currentatom].type].-mass
* (allatoms[currentatom].vx*allatoms[currentatom].vx +
allatoms[currentatom].vy*allatoms[currentatom] .vy +
allatoms[currentatom] .vz*allatoms[currentatom].vz);

netmx += elements[allatoms[currentatom].type].mass *
allatoms[currentatom] .vx;

netmy += elements[allatoms[currentatom].type].mass *
allatoms[currentatom].vy;

netmz += elements[allatoms[currentatom].type].mass *
allatoms[currentatom] .vz;

currentatom++;

allatoms[currentatom].type = H;

allatoms[currentatom].x = 1.5 * a + 3.2 * (double)i * a;

allatoms[currentatom].y = 1.5 * a + 2.4 * (double)j * a;

allatoms[currentatom].z = 1.5 * a + 3.8 * (double)k * a +
0.25 * a * (double)N;

allatoms[currentatom].vx = ((double)rand()-RMo2)/RMo2;

allatoms[currentatom].vy = ((double)rand()-RMo2)/RMo2;

allatoms[currentatom].vz = ((double)rand()-RMo2)/RMo2;

allatoms[currentatom].ax = 0.0;

allatoms[currentatom].ay = 0.0;

allatoms[currentatom].az = 0.0;

allatoms[currentatom].ndx = 0.0;

allatoms[currentatom].ndy = 0.0;

allatoms[currentatom].ndz = 0.0;

allatoms[currentatom] .potential = 0.0;

allatoms[currentatom].newpotential = 0.0;

for(1=0; I<NUMBONDS; I++) allatoms[currentatom].bonds[I] =
0;

allatoms[currentatom] .bonds[0] = -1;

currentT += 0.5 * elements[allatoms[currentatom].type].-mass
* (allatoms[currentatom].vx*allatoms[currentatom].vx +
allatoms[currentatom].vy*allatoms[currentatom].vy +
al latoms[currentatom].vz*al latoms[currentatom].vz);

41

allatoms[currentatom].vx;
allatoms[currentatom] .vy;

allatoms[currentatom] .vz;

0.25 * a * (double)N;

0;

* (allatoms[currentatom]

netmx += elements[allatoms[currentatom].type].mass *

netmy += elements[allatoms[currentatom].type].mass *

netmz += elements[allatoms[currentatom].type].mass *

currentatom++;

allatoms
allatoms
al latoms
allatoms

al latoms
allatoms
allatoms
al latoms
allatoms
allatoms
al latoms
allatoms
allatoms
al latoms
allatoms
for(1=0;

[currentatom

currentatom
currentatom
currentatom
currentatom

currentatom
currentatom
currentatom
currentatom
currentatom

currentatom
currentatom
currentatom
currentatom
currentatom
I<NUMBONDS;

.type =H

-VX
vy

vz

.ax ;
_ay ;
.az .0;
-ndx = 0.0
.ndy = 0.0
.ndz = 0.0
.potential =

AN U'I(ﬂU'I

* g +
* g +

3.2 * (double)i * a;
2.4 * (double)j * a;
3. 8 * (double)k * a +

double)rand()-RMo2)/RMo2;
double)rand()-RMo2)/RMo2;
ouble)rand()—RMoZ)/RMoZ;

0.0;

_newpotential = 0.0;

1++) allatoms[currentatom].bonds[1] =

allatoms[currentatom] .bonds[0]
currentT += 0.5 * elements[allatoms[currentatom].type]-mass

.vx*allatoms[currentatom].vx +

allatoms[currentatom] .vy*allatoms[currentatom] .vy +
allatoms[currentatom].vz*allatoms[currentatom].vz);
netmx += elements[allatoms[currentatom].type].mass *

allatoms[currentatom] .vx;
allatoms[currentatom].vy;

allatoms[currentatom] .vz;

0.25 * a * (double)N;

0;

allatoms[currentatom] .vx;
allatoms[currentatom] .vy;

allatoms[currentatom].vz;

* a + a*n;
* a + a*n;
* a+ 0.25
RMo2)/RMo2;

_2'

netmy += elements[allatoms[currentatom].type].mass *

netmz += elements[allatoms[currentatom].type].mass *

currentatom++;

allatoms[currentatom].type = H;

allatoms[currentatom].x = 2.5 * a + 3.2 * (double)i * a;
allatoms[currentatom].y = 1.5 * a + 2.4 * (double)j * a;
allatoms[currentatom].z = 2.5 * a + 3.8 * (double)k * a +
allatoms[currentatom].vx = ((double)rand()-RMo2)/RMo2;
allatoms[currentatom].vy = ((double)rand()-RMo2)/RMo2;
allatoms[currentatom].vz = ((double)rand()-RMo2)/RMo2;
allatoms[currentatom].ax = 0.0;

allatoms[currentatom].ay = 0.0;

allatoms[currentatom].az = 0.0;

allatoms[currentatom].ndx = 0.0;
allatoms[currentatom].ndy = 0.0;
allatoms[currentatom].ndz = 0.0;

allatoms[currentatom] .potential = 0.0;
allatoms[currentatom].newpotential = 0.0;

for(1=0; I<NUMBONDS; I++) allatoms[currentatom].bonds[I] =
allatoms[currentatom] .bonds[0] = -3;

currentT += 0.5 * elements[allatoms[currentatom].type].-mass
* (allatoms[currentatom].vx*allatoms[currentatom].vx +
allatoms[currentatom].vy*allatoms[currentatom].vy +
al latoms[currentatom].vz*al latoms[currentatom].vz);
netmx += elements[allatoms[currentatom].type].mass *

netmy += elements[allatoms[currentatom].type].mass *

netmz += elements[allatoms[currentatom].type].mass *

currentatom++;

for(n=0;

allatoms[currentatom]. type

n<N-1; n++)

al latoms[currentatom].x

allatoms[currentatom] .y

allatoms[currentatom] .z

* a * (double)N + 0.00*a*n;

al latoms[currentatom] .vx

2.5 ; a + 3.2 * (double)i

2.5 * a+ 2.4 * (double)j

1.5 * a + 3.8 * (double)k
((double)rand()-

42

allatoms[currentatom].vy = ((double)rand()-
RMo2)/RMo2;

allatoms[currentatom].vz = ((double)rand()-
RMo2)/RMo2;

allatoms[currentatom].ax = 0.0;

allatoms[currentatom].ay = 0.0;

allatoms[currentatom].az = 0.0;

allatoms[currentatom].ndx = 0.0;

allatoms[currentatom].ndy = 0.0;

allatoms[currentatom].ndz = 0.0;

al latoms[currentatom] .potential = 0.0;

allatoms[currentatom].newpotential = 0.0;

for(1=0; I<NUMBONDS; I++)
allatoms[currentatom].bonds[I1] = O;

allatoms[currentatom] .bonds[0] = -4;

allatoms[currentatom] .bonds[1] = 1;

allatoms[currentatom].bonds[2] = 2;

allatoms[currentatom].bonds[3] = 3;

currentT += 0.5 *

elements[al

latoms[currentatom].type].mass *

(allatoms[currentatom] .vx*al latoms[currentatom].vx +
allatoms[currentatom].vy*allatoms[currentatom].vy +
al latoms[currentatom].vz*al latoms[currentatom].vz);
netmx += elements[allatoms[currentatom].type].mass *

allatoms[currentatom] .vx;

netmy += elements[allatoms[currentatom].type].mass *

allatoms[currentatom] .vy;

netmz += elements[allatoms[currentatom].type].mass *

allatoms[currentatom].vz;

* a + a*n;
* a + a*n;
* a+ 0.25
RMo2)/RMo2;
RMo2)/RMo2;
RMo2)/RMo2;

currentatom++;

al latoms[currentatom] . type

allatoms[currentatom] . x
allatoms[currentatom] .y

allatoms[currentatom].z

* a * (double)N + 0.00*a*n;

allatoms[currentatom] .vx

al latoms[currentatom] .vy

allatoms[currentatom].vz

allatoms[currentatom] . ax
allatoms[currentatom] .ay
allatoms[currentatom].az
allatoms[currentatom] . ndx
allatoms[currentatom] . ndy
al latoms[currentatom] .ndz

allatoms[currentatom] .potential = 0.0
allatoms[currentatom].newpotential = 0.0

2.0

H;
* a + 3.2 * (double)i

3.0 * a + 2.4 * (double)j
1.0 * a + 3.8 * (double)k
((double)rand()-
((double)rand()-
((double)rand()-
0.0;

0.0;
0.0

[efo))

.0
.0
0.0

for(1=0; I<NUMBONDS; I++)
allatoms[currentatom] .bonds[1] = O;

allatoms[currentatom] .bonds[0] = -1;

currentT += 0.5 *

elements[al

latoms[currentatom].type].mass *

(allatoms[currentatom].vx*al latoms[currentatom].vx +
al latoms[currentatom].vy*allatoms[currentatom].vy +
allatoms[currentatom] .vz*allatoms[currentatom].vz);
netmx += elements[allatoms[currentatom].type].mass *

allatoms[currentatom].vx;

netmy += elements[allatoms[currentatom].type].mass *

allatoms[currentatom] .vy;

netmz += elements[allatoms[currentatom].type].mass *

allatoms[currentatom] .vz;

* a + a*n;
* a + a*n;
*a+ 0.25
RMo2)/RMo2;
RMo2)/RMo2;
RMo2)/RMo2;

currentatom++;

allatoms[currentatom] . type

allatoms[currentatom].x
allatoms[currentatom] .y

allatoms[currentatom].z

* a * (double)N + 0.00*a*n;

allatoms[currentatom].vx

allatoms[currentatom] .vy

allatoms[currentatom].vz

H

i

a + 3.2 * (double)i
2.0 a + 2.4 * (double)j
a + 3.8 * (double)k

((double)rand(Q)-

*

1.0

((double)rand()-
((double)rand()-

43

allatoms[currentatom] .bonds[I1] =

allatoms[currentatom].ax
al latoms[currentatom].ay
allatoms[currentatom].az
allatoms[currentatom].nd
allatoms[currentatom] .nd
allatoms[currentatom].nd

X
Yy

z =

|
C
C

OOuiurus

allatoms[currentatom]. potentlal = 0.0;
al latoms[currentatom] .newpotential =

for(1=0; I<NUMBONDS; I++

)

allatoms[currentatom] bonds[0] =

currentT += 0.5 *

elements[al latoms[currentatom].type].-mass *

(allatoms[currentatom]

.vx*allatoms[currentatom].vx +

allatoms[currentatom] .vy*allatoms[currentatom] .vy +
allatoms[currentatom].vz*allatoms[currentatom].vz);
netmx += elements[allatoms[currentatom].type].mass *

allatoms[currentatom] .vx;
allatoms[currentatom].vy;

allatoms[currentatom] .vz;

* a + a*(n+l);

* a + a*(n+l);

-2;

0. 0;

netmy += elements[allatoms[currentatom].type].mass *

netmz += elements[allatoms[currentatom].type].mass *

currentatom++;

allatoms[currentatom] . type

al latoms[currentatom].x
allatoms[currentatom] .y

allatoms[currentatom] .z

*a + 0.25 * a * (double)N + 0.00*a*n;

RMo2)/RMo2;
RMo2)/RMo2;
RMo2)/RMo2;

al latoms[currentatom].bonds[I1] =

allatoms[currentatom].vx = ((double)rand()-
allatoms[currentatom].vy = ((double)rand()-
allatoms[currentatom].vz = ((double)rand()-
allatoms[currentatom].ax = 0.0;
allatoms[currentatom].ay = 0.0;
allatoms[currentatom].az = 0.0;
allatoms[currentatom].ndx = 0.0;
allatoms[currentatom].ndy = 0.0;
allatoms[currentatom].ndz = 0.0;

al latoms[currentatom] .potential = 0.0;
allatoms[currentatom].newpotential = 0.0;
for(1=0; I<NUMBONDS; I++)
allatoms[currentatom] .bonds[0] = -3;
allatoms[currentatom] .bonds[1] = 1;
allatoms[currentatom].bonds[2] = 2;
allatoms[currentatom] .bonds[3] = 3;

currentT += 0.5 *

elements[al latoms[currentatom].type].mass *
(allatoms[currentatom] .vx*al latoms[currentatom].vx +
allatoms[currentatom].vy*allatoms[currentatom].vy +

allatoms[currentatom]
allatoms[currentatom] .vx;
allatoms[currentatom] .vy;

allatoms[currentatom].vz;

* a + a*(n+l);

* a + a*(n+l);

.vz*allatoms[currentatom].vz);

=C
2.0

* a + 3.2 * (double)i

2.0 * a + 2.4 * (double)j

2.0 * a + 3.8 * (double)k

netmx += elements[allatoms[currentatom].type].mass *

netmy += elements[allatoms[currentatom].type].mass *

netmz += elements[allatoms[currentatom].type].mass *

currentatom++;

al latoms[currentatom] . type

allatoms[currentatom] . x
allatoms[currentatom].y

allatoms[currentatom].z

*a+ 0.25 * a * (double)N + 0.00*a*n;

RMo2)/RMo2;
RMo2)/RMo2;
RMo2)/RMo2;

allatoms[currentatom] .vx
allatoms[currentatom] .vy
allatoms[currentatom].vz
allatoms[currentatom] . ax
allatoms[currentatom].ay

allatoms[currentatom].az
allatoms[currentatom].nd

X

=H

1.5 * a + 3.2 * (double)i

2.5 * a + 2.4 * (double)j
2.5 * a + 3.8 * (double)k

((double)rand()-
((double)rand()-
((double)rand(Q)-

44

allatoms[currentatom].ndy = 0.0;

allatoms[currentatom].ndz = 0.0;

allatoms[currentatom] .potential = 0.0;

allatoms[currentatom].newpotential = 0.0;

for(1=0; I<NUMBONDS; I++)
allatoms[currentatom].bonds[1] = O;

allatoms[currentatom] .bonds[0] = -1;

currentT += 0.5 *
elements[allatoms[currentatom].type].mass *
(allatoms[currentatom] .vx*al latoms[currentatom].vx +
allatoms[currentatom].vy*allatoms[currentatom].vy +
allatoms[currentatom] .vz*allatoms[currentatom].vz);

netmx += elements[allatoms[currentatom].type].mass *
allatoms[currentatom].vx;

netmy += elements[allatoms[currentatom].type].mass *
allatoms[currentatom] .vy;

netmz += elements[allatoms[currentatom].type].mass *
allatoms[currentatom].vz;

currentatom++;

allatoms[currentatom] .type = H;
allatoms[currentatom].x = 2.5 * a + 3.2 * (double)i
* a + a*(n+l);

allatoms[currentatom].y = 1.5 * a + 2.4 * (double)j
* a + a*(n+l);

allatoms[currentatom].z = 2.5 * a + 3.8 * (double)k
*a + 0.25 * a * (double)N + 0.00*a*n;

allatoms[currentatom].vx = ((double)rand()-

RMo2)/RMo2;
allatoms[currentatom].vy = ((double)rand()-
RMo2)/RMo2;
allatoms[currentatom].vz = ((double)rand()-
RMo2)/RMo2;
allatoms[currentatom].ax = 0.0;
allatoms[currentatom].ay = 0.0;
allatoms[currentatom].az = 0.0;
allatoms[currentatom].ndx = 0.0;
allatoms[currentatom].ndy = 0.0;
allatoms[currentatom].ndz = 0.0;

allatoms[currentatom].potential = 0.0;

al latoms[currentatom] .newpotential = 0.0;

Ffor(1=0; I<NUMBONDS; I++)
allatoms[currentatom].bonds[1] = O;

allatoms[currentatom] .bonds[0] = -2;

currentT += 0.5 *
elements[allatoms[currentatom].type].mass *
(allatoms[currentatom].vx*al latoms[currentatom].vx +
allatoms[currentatom] .vy*allatoms[currentatom] .vy +
allatoms[currentatom].vz*allatoms[currentatom].vz);

netmx += elements[allatoms[currentatom].type].mass *
allatoms[currentatom] .vx;

netmy += elements[allatoms[currentatom].type].mass *
allatoms[currentatom].vy;

netmz += elements[allatoms[currentatom].type].mass *
allatoms[currentatom] .vz;

currentatom++;

}

al latoms[currentatom] .type = C;
allatoms[currentatom].x = 2.5 * a + 3.2 * (double)i * a +

a*(N-1);
allatoms[currentatom].y = 2.5 * a + 2.4 * (double)j * a +
a*(N-1);
allatoms[currentatom].z = 1.5 * a + 3.8 * (double)k * a +
0.25 * a * (double)N + 0.00*a*(N-1);
allatoms[currentatom].vx = ((double)rand()-RMo2)/RMo2;
allatoms[currentatom].vy = ((double)rand()-RMo2)/RMo2;
allatoms[currentatom].vz = ((double)rand()-RMo2)/RMo2;
allatoms[currentatom].ax = 0.0;
allatoms[currentatom].ay = 0.0;
allatoms[currentatom].az = 0.0;
allatoms[currentatom].ndx = 0.0;
allatoms[currentatom].ndy = 0.0;
allatoms[currentatom].ndz = 0.0;
allatoms[currentatom] .potential = 0.0;
allatoms[currentatom].newpotential = 0.0;
for(1=0; I<NUMBONDS; I++) allatoms[currentatom].bonds[I] =
0;
allatoms[currentatom] .bonds[0] = -4;
allatoms[currentatom].bonds[1] = 1;
allatoms[currentatom].bonds[2] = 2;

45

allatoms[currentatom].vy*allatoms[currentatom].vy +
al latoms[currentatom].vz*al latoms[currentatom].vz);

allatoms[currentatom] .vx;
allatoms[currentatom] .vy;

allatoms[currentatom].vz;

a*(N-1);
a*(N-1);

allatoms[currentatom].bonds[3] = 3;
currentT += 0.5 * elements[allatoms[currentatom].type].mass
* (allatoms[currentatom].vx*allatoms[currentatom].vx +

netmx += elements[allatoms[currentatom].type].mass *

netmy += elements[allatoms[currentatom].type].mass *

netmz += elements[allatoms[currentatom].type].mass *

currentatom++;

al latoms[currentatom] .type = H
allatoms[currentatom].x = 2.0

allatoms[currentatom].y =

allatoms[currentatom].z =

0.25 * a * (double)N + 0.00*a*(N-1);

0;

allatoms[currentatom].vy*allatoms[currentatom].vy +
allatoms[currentatom].vz*al latoms[currentatom].vz);

allatoms[currentatom] .vx;
allatoms[currentatom] .vy;

allatoms[currentatom].vz;

a*(N-1);
a*(N-1);

* a + 3.2 * (double)i * a +
3.0 * a + 2.4 * (double)j * a +
1.0 * a + 3.8 * (double)k * a +

allatoms[currentatom].vx = ((double)rand()-RMo2)/RMo2;
allatoms[currentatom].vy = ((double)rand()-RMo2)/RMo2;
allatoms[currentatom].vz = ((double)rand()-RMo2)/RMo2;
allatoms[currentatom].ax = 0.0;
allatoms[currentatom].ay = 0.0;
allatoms[currentatom].az = 0.0;
allatoms[currentatom].ndx = 0.0;
allatoms[currentatom].ndy = 0.0;
allatoms[currentatom].ndz = 0.0;

allatoms[currentatom] .potential = 0.0;
allatoms[currentatom].newpotential = 0.0;

for(1=0; I<NUMBONDS; I++) allatoms[currentatom].bonds[I] =
allatoms[currentatom] .bonds[0] = -1;

currentT += 0.5 * elements[allatoms[currentatom].type].-mass
* (allatoms[currentatom].vx*allatoms[currentatom].vx +

netmx += elements[allatoms[currentatom].type].mass *

netmy += elements[allatoms[currentatom].type].mass *

netmz += elements[allatoms[currentatom].type].mass *

currentatom++;

allatoms[currentatom] .type = H;
allatoms[currentatom].x = 3.0 *

allatoms[currentatom].y =

allatoms[currentatom].z =

0.25 * a * (double)N + 0.00*a*(N-1);

0;

allatoms[currentatom].vy*allatoms[currentatom].vy +
al latoms[currentatom] .vz*al latoms[currentatom].vz);

allatoms[currentatom] .vx;
allatoms[currentatom] .vy;

allatoms[currentatom].vz;

2.0 *
1.0 *

a + 3.2 * (double)i * a +
a+ 2.4 * (double)j * a +
a + 3.8 * (double)k * a +

allatoms[currentatom].vx = ((double)rand()-RMo2)/RMo2;
allatoms[currentatom].vy = ((double)rand()-RMo2)/RMo2;
allatoms[currentatom].vz = ((double)rand()-RMo2)/RMo2;
allatoms[currentatom].ax = 0.0;
allatoms[currentatom].ay = 0.0;
allatoms[currentatom].az = 0.0;
allatoms[currentatom].ndx = 0.0;
allatoms[currentatom].ndy = 0.0;
allatoms[currentatom].ndz = 0.0;

allatoms[currentatom] .potential = 0.0;
allatoms[currentatom].newpotential = 0.0;

for(1=0; I<NUMBONDS; I++) allatoms[currentatom].bonds[I] =
allatoms[currentatom] .bonds[0] = -2;

currentT += 0.5 * elements[allatoms[currentatom].type].mass
* (allatoms[currentatom].vx*allatoms[currentatom].vx +

netmx += elements[allatoms[currentatom].type].mass *

netmy += elements[allatoms[currentatom].type].mass *

netmz += elements[allatoms[currentatom].type].mass *

currentatom++;

allatoms[currentatom].type =

H;

46

a*(N-1)
a*(N-1)

allatoms[currentatom].x
allatoms[currentatom] .y

allatoms[currentatom] .z

0.25 * a * (double)N + 0.00*a*(N-1);

0;

allatoms[currentatom].vy*allatoms[currentatom].vy +

allatoms[currentatom] .vz*allatoms[currentatom].vz);

netmx += elements[allatoms[currentatom].type].mass *
allatoms[currentatom].vx;

allatoms[currentatom] .vy;

allatoms[currentatom] .vz;

* vMul;
* vMul;

* vMul;

}
}

}

allatoms[currentatom].vx =
allatoms[currentatom] .vy =
allatoms[currentatom] .vz =
allatoms[currentatom].ax = 0.0;
allatoms[currentatom].ay = 0.0;
allatoms[currentatom].az = 0.0;
allatoms[currentatom].ndx = 0.0;
allatoms[currentatom].ndy = 0.0;
allatoms[currentatom].ndz = 0.0;
allatoms[currentatom].potential = 0.0;
al latoms[currentatom].newpotential = 0.0;
for(1=0; I<NUMBONDS;
allatoms[currentatom] .bonds[0] = -3;

= 3.0 *a+ 3.2 * (double)i * a +
=3.0* a+ 2.4 * (double)j * a +
=2.0* a+ 3.8 * (double)k * a +
((double)rand()-RMo2)/RMo2;

((double)rand()-RMo2)/RMo2;
((double)rand()-RMo2)/RMo2;

1++) allatoms[currentatom].bonds[1] =

currentT += 0.5 * elements[allatoms[currentatom].type].-mass
* (allatoms[currentatom].vx*allatoms[currentatom].vx +

netmy += elements[allatoms[currentatom].type].mass *

netmz += elements[allatoms[currentatom].type].mass *

currentatom++;

currentT /= (double)numatoms;

currentT /= 1.5 * kB;

netmx /= (double)numatoms;
netmy /= (double)numatoms;
netmz /= (double)numatoms;

vMul = sqrt(TEMP/currentT);

for(i=0; i<numatoms;

while(allatoms[i]-x
while(allatoms[i]-x
while(allatoms[i].y
while(allatoms[i].y
while(allatoms[i]-z
while(allatoms[i].z

allatoms[i]-vx
allatoms[i]-.vy

allatoms[i].vz

i++)

> tempheader.bigX) allatoms[i].x -= tempheader.bigX;
< 0.0) allatoms[i]-x += tempheader.bigX;
> tempheader.bigY) allatoms[i].y -= tempheader.bigY;
< 0.0) allatoms[i].y += tempheader.bigY;
> tempheader.bigz) allatoms[i].-z -= tempheader.bigZ;
< 0.0) allatoms[i].-z += tempheader.bigZ;

= (allatoms[i]-vx - netmx/elements[allatoms[i]-type]-mass)

fwrite(&tempheader, sizeof(Headerinfo), 1, file);
fwrite(allatoms, sizeof(Atom), numatoms, Ffile);

free(allatoms);

fclose(file);

return 1;

(allatoms[i]-vy - netmy/elements[allatoms[i].type].-mass)

= (allatoms[i]-vz - netmz/elements[allatoms[i]-type]-mass)

47

interact

Description
The interact application is the meat of the simulation implementation and takes the file

generated by makeoutfile and runs the simulation. The details are discussed briefly in the

Implementation section.

Code

interact.c

#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include "atoms.h"

#include "header.h"

#include "types.h"

#define getclosest(d,bo2,b) ((d > bo2)?(d-b):((d < -bo2)?(d+b):d))
#define OUTPUTEVERY 1000

#define MAXNEIGHBORS 500

const double kB = 1.380658E-23;

Atom* allatoms;

int numatoms;

int** neighbors;

double bigX,bigY,bigZ;
double bXo2,bYo2,bZo2;

double mincutoff;
double maxdr;

double dt,hdt;
double desiredT;
double T;
double velMul;
int iterations;
void correctT()
int i;
T = 0;
for(i=0; i<numatoms; i++)
T += 0.5 * elements[allatoms[i].type].mass *

(allatoms[i].vx*allatoms[i].vx + allatoms[i].vy*allatoms[i].vy +
allatoms[i1].vz*allatoms[1]-vz);

T /= (double)numatoms;
T /= 1.5 * kB;

void makeneighbors()
int i,j,k;
double dx,dy,dz;
Atom* thisatom;
Atom* thatatom;

maxdr = 0.0;

48

printf(*'calculating neighbors at i=%d\n\n', iterations);
for(i=0; i<numatoms; i++)

thisatom = allatoms + i;
k = 0;

thisatom->ndx = thisatom->x;
thisatom->ndy = thisatom->y;
thisatom->ndz = thisatom->z;
for(J=i+1l; j<numatoms && K<MAXNEIGHBORS; j++)

thatatom = allatoms + j;

dx = thisatom->x - thatatom->x;
dy = thisatom->y - thatatom->y;
dz = thisatom->z - thatatom->z;
dx = getclosest(dx,bXo2,bigX);
dy = getclosest(dy,bYo2,bigY);
dz = getclosest(dz,bZo2,bigZ);

i f(dx<mincutoff&&dx>-mincutoff&&dy<mincutoff&&dy>-
mincutoff&&dz<mincutoff&&dz>-mincutoff)
{

X neighbors[i][k++] = j:
3

3 neighbors[i][k] = -1;
3

void interactions()

int i,j,k,I,m,n;

Atom* thisatom;

Atom* atom2;

Atom* atom3;

Atom* thatatom;

int atom2off;

int atom3off;

int atomdoff;

double epsilon,sigma,thismass,thatmass,k0,x0,z;
double rmsq;

double dx,dy,dz;

double rsq,rmor2,rmor6,rmorl2,r,rmx0;
double pot,mag;

double fx,fy,fz;

int bonded,doffset;

for(i=0; i<numatoms; i++)

thisatom = allatoms + i;
thismass = elements[thisatom->type].mass;

/*order 1 bonded interactions*/
for(J=0; j<NUMBONDS; j++)

if(thisatom->bonds[j] <= 0)
continue;

thatatom = thisatom + thisatom->bonds[j];
thatmass = elements[thatatom->type].mass;

switch(thisatom->type)
{

case H:
kO = 483;
X0 = 1.12E-10;
break;
default:
switch(thatatom->type)
case H:
kO = 483;
x0 = 1.12E-10;
break;
default:
kO = 450;

49

X0 = 1.53E-10;

break;

b

dx = thisatom->x - thatatom->x;
dy = thisatom->y - thatatom->y;
dz = thisatom->z - thatatom->z;
dx = getclosest(dx,bXo2,bigX);
dy = getclosest(dy,bYo2,bigY);
dz = getclosest(dz,bzZo2,bigZ);

rsq = dx*dx + dy*dy + dz*dz;
r = sqrt(rsq);
rmx0 = r-x0;

pot = 0.5 * kO * rmx0 * rmx0;
mag = -kO * rmx0 / r;

fx = dx*mag;

fy = dy*mag;

fz = dz*mag;

thisatom->newpotential += pot;
thisatom->ax += fx/thismass;
thisatom->ay += fy/thismass;
thisatom->az += fz/thismass;

thatatom->newpotential += pot;

thatatom->ax -= fx/thatmass;
thatatom->ay -= fy/thatmass;
thatatom->az -= fz/thatmass;

}

/*order 2 bonded interactions*/
for(J=0; jJ<NUMBONDS; j++)
{

atom2off = thisatom->bonds[j];
if(atom2off == 0)
continue;

atom2 = thisatom+atom2off;
for(k=0; k<NUMBONDS; k++)
{

atom3off = atom2off+atom2->bonds[k];
if(atom2->bonds[k] == 0 || atom3off <= 0)
continue;

thatatom = thisatom + atom3off;
thatmass = elements[thatatom->type].mass;

switch(thisatom->type)

case H:
switch(thatatom->type)

case H:
X0 = 1.83E-10;
break;
default:
X0 = 2.18E-10;
break;

break;

default:
switch(thatatom->type)
{

case H:
x0 = 2.18E-10;
break;
default:
X0 = 2.50E-10;
break;

¥
break;

}
ko

10;

dx thisatom->x - thatatom->Xx;

thisatom->y - thatatom->y;

}
}

dz thisatom->z - thatatom->z;

dx = getclosest(dx,bXo2,bigX);
dy = getclosest(dy,bYo2,bigY);
dz = getclosest(dz,bZo2,bigZ);

rsq = dx*dx + dy*dy + dz*dz;
r = sqrt(rsq);
rmx0 = r-x0;

pot = 0.5 * kO * rmx0 * rmxO0;
mag = -kO * rmx0 / r;

X = dx*mag;

fy = dy*mag;

fz = dz*mag;

thisatom->newpotential += pot;
thisatom->ax += fx/thismass;
thisatom->ay += fy/thismass;
thisatom->az += fz/thismass;

thatatom->newpotential += pot;

thatatom->ax -= fx/thatmass;
thatatom->ay -= fy/thatmass;
thatatom->az -= fz/thatmass;

/*order 3 bonded interactions*/
for(J=0; jJ<NUMBONDS; j++)
{

atom2off = thisatom->bonds[j];
if(atom2off == 0)

continue;

atom2 = thisatom + atom2off;

for(k=0; k<NUMBONDS; k++)
{

atom3off = atom2off + atom2->bonds[k];

if(atom2->bonds[k] == 0 || atom3off <= 0)
continue;

atom3 = thisatom + atom3off;

for(1=0; I<NUMBONDS; I1++)

{
atom4off = atom3off + atom3->bonds[I];
if(atom3->bonds[k] == 0 || atom4off <= 0)

continue;

thatatom = thisatom + atom4off;
thatmass = elements[thatatom->type].mass;

switch(thisatom->type)
{

case H:

?witch(thatatom->type)

case H:
X0 = 2.278E-10;
z = 2.392E-19;
break;

default:
X0 = 2.446E-10;
z = 2.234E-19;
break;

break;

default:

switch(thatatom->type)

case H:
X0 = 2.446E-10;
z = 2.234E-19;
break;

default:
X0 = 2.551E-10;
z = 2.660E-19;
break;

T

51

}

break;

3

dx = thisatom->x - thatatom->Xx;
dy = thisatom->y - thatatom->y;
dz = thisatom->z - thatatom->z;
dx = getclosest(dx,bXo2,bigX);
dy = getclosest(dy,bYo2,bigY);
dz = getclosest(dz,bZo2,bigZ);

rsq = dx*dx + dy*dy + dz*dz;

pot = z*x0*x0/rsq;

mag 2.0*pot/rsq;
fx = dx*mag;
fy = dy*mag;
fz = dz*mag;

thisatom->newpotential += pot;
thisatom->ax += fx/thismass;
thisatom->ay += fy/thismass;
thisatom->az += fz/thismass;

thatatom->newpotential += pot;

thatatom->ax -= fx/thatmass;
thatatom->ay -= fy/thatmass;
thatatom->az -= fz/thatmass;

}

/*order 0, non-bonded (Van Der Waal®s) interactions*/
for(J=0; jJ<MAXNEIGHBORS; j++)
{

if(neighbors[il[j] == -1)

break;
thatatom = allatoms + neighbors[il[j];
doffset = neighbors[i][j] - i1;

bonded = 0;
for(n=0; n<NUMBONDS; n++)

if(doffset == thisatom->bonds[n])
bonded = 1;

for(m=0; m<NUMBONDS; m++)

if(doffset == (thisatom+thisatom->bonds[n])-
>bonds[m]+thisatom->bonds[n])

bonded = 1;
3
T
iT(bonded)
continue;

thatmass = elements[thatatom->type].mass;
fx = fy = fz = 0.0;
if(thisatom->type == thatatom->type)

epsilon = elements[thisatom->type].epsilon;
sigma = 2.0 * elements[thisatom->type].radius;

else

{

epsilon = sqrt(elements[thisatom-

>type] -epsilon*elements[thatatom->type].epsilon);

sigma = elements[thisatom->type].radius +

elements[thatatom->type].radius;
}

rmsq = sigma*sigma;

= thisatom->x - thatatom->Xx;
dy = thisatom->y - thatatom->y;
= thisatom->z - thatatom->z;

52

dx = getclosest(dx,bXo2,bigX);
dy = getclosest(dy,bYo2,bigY);
dz = getclosest(dz,bzo2,bigZ);

rsq = dx*dx + dy*dy + dz*dz;

= rmsq/rsq;
rmor6é = rmor2*rmor2*rmor2;
rmorl2 = rmor6*rmor6;

pot = -4_0*epsilon*(rmor6-rmorl2);

mag = -24._.0*(epsilon/rsq)*(rmor6-2.0*rmorl2);
X = dx*mag;

fy = dy*mag;

fz = dz*mag;

thisatom->newpotential += pot;
thisatom->ax += fx/thismass;
thisatom->ay += fy/thismass;
thisatom->az += fz/thismass;

thatatom->newpotential += pot;

thatatom->ax -= fx/thatmass;
thatatom->ay -= fy/thatmass;
thatatom->az -= fz/thatmass;

}
}

void integrate()
{

int i;

double axhdt, ayhdt, azhdt;
double dx,dy,dz;

Atom* thisatom;

for(i=0; i<numatoms; i++)
thisatom = allatoms + i;
thisatom->potential = thisatom->newpotential;

/*temperature correction*/
thisatom->vx *= velMul;
thisatom->vy *= velMul;
thisatom->vz *= velMul;

/* velocity verlet integration */

axhdt = thisatom->ax * hdt;

ayhdt = thisatom->ay * hdt;

azhdt = thisatom->az * hdt;

thisatom->vx += axhdt;

thisatom->vy += ayhdt;

thisatom->vz += azhdt;

thisatom->x += thisatom->vx * dt + axhdt*dt;
thisatom->y += thisatom->vy * dt + ayhdt*dt;
thisatom->z += thisatom->vz * dt + azhdt*dt;
thisatom->vx += axhdt;

thisatom->vy += ayhdt;

thisatom->vz += azhdt;

if(thisatom->x > bigX) thisatom->x -= bigX;
else if(thisatom->x < 0.0) thisatom->x += bigX;
if(thisatom->y > bigY) thisatom->y -= bigY;
else if(thisatom->y < 0.0) thisatom->y += bigY;
if(thisatom->z > bigZ) thisatom->z -= bigZ;
else if(thisatom->z < 0.0) thisatom->z += bigZ;

= thisatom->x - (thisatom->ndx);
dy = thisatom->y - (thisatom->ndy);

dz thisatom->z - (thisatom->ndz);
dx = getclosest(dx,bXo2,bigX);
dy = getclosest(dy,bYo2,bigY);
dz = getclosest(dz,bZo2,bigZ);

maxdr = max(max(maxdr,dx),max(dy,dz));;

thisatom->newpotential = 0.0;
thisatom->ax
thisatom->ay

0.0:

53

}

thisatom->az = 0.0;

}

int main(int argc, char** argv)

int i,j;

int outevery = OUTPUTEVERY;
int keepgoing;

Headerinfo tempheader;
FILE* file;

int outnum;

char buffer[15];

int timeO;

time0 = (int)time(NULL);

outnum = O3

if(argc < 2)

t printf("'no infile specified\n\n");

return O;

3
file = fopen(argv[1l], "rb™);
Ef(file == NULL)

printf(""failed to open infile %s for reading\n\n", argv[1]);
return errno;

}
printf(*'using infile %s\n\n", argv[1]);
i = (int)fread(&tempheader, sizeof(Headerinfo), 1, file);

if(i < 1)

{
printf("error reading header from infile\n\n");
return O;

3

iterations = tempheader.iterations;

if(iterations > 0)
keepgoing = 1;
else
keepgoing = O;

mincutoff = tempheader._mincutoff;
dt = tempheader.dt;

bigX = tempheader.bigX;
bXo2 = bigx/2.0;
bigY = tempheader.bigY;
bYo2 = bigY/2.0;
bigZ = tempheader.bigZ;
bZo2 = bigz/2.0;

desiredT = tempheader.desiredT;
T = desiredT;

numatoms = tempheader.numatoms;

allatoms = (Atom*)malloc(numatoms*sizeof(Atom));
if(allatoms == NULL)
{

printf("'unable to allocate memory for allatoms\n\n');
return O;

}

i = (int)fread(allatoms, sizeof(Atom), numatoms, file);
if(i < numatoms)
printf("error reading atoms from infile\n\n");
return O;

3
fclose(file);

neighbors = (int**)malloc(numatoms*sizeof(int*));

54

if(neighbors == NULL)
{

printf("'unable to allocate memory for neighbors\n\n");
free(allatoms);
return O;

3
for(i=0; i<numatoms; i++)

neighbors[i] = (int*)malloc(MAXNEIGHBORS*sizeof(int));
if(neighbors[i] == NULL)
{

printf("'unable to allocate memory for neighbors[%d]\n\n", i);
for(=0; j<i; j++)

free(neighbors[i]);

free(neighbors);
free(allatoms);
return O;

3

for(i=0; i<numatoms; i++)
for(j=0; J<MAXNEIGHBORS; j++)
{

3 neighbors[i]l[j] = -1;

makeneighbors();

hdt = 0.5 * dt;
while(keepgoing)

t if(maxdr>0_5*mincutoff)

makeneighbors();

}

interactions();

correctTQ);
velMul = sqgrt(desiredT/T);

integrate();
iterations--;
if(T>10000)
{

iterations = min(10, iterations);
outevery = 1;

}

if(iterations == outevery*(iterations/outevery))

file = NULL;

do

{
if(file = NULL) fclose(File);
outnum++;
sprintf(buffer,”o%07d.atm", outnum);
file = fopen(buffer, "r);

} while(File = NULL);

printf(""%s\n", buffer);

printf("T=%F\n", T);

printf("i=%d\n", iterations);

printf(""t=%d\n", (int)time(NULL) - time0);

printf(*'\n"");

file = fopen(buffer, "wb™);

tempheader.iterations = iterations;
tempheader.mincutoff = mincutoff;
tempheader.dt = dt;

tempheader .bigX = bigX;
tempheader.bigY bigY;
tempheader.bigZz bigZ;

tempheader .numatoms = numatoms;
tempheader.desiredT = desiredT;
tempheader.T = T;

55

}

fwrite(&tempheader, sizeof(Headerinfo), 1, file);
fwrite(allatoms, sizeof(Atom), numatoms, Ffile);

fclose(file);
}

if(iterations > 0)
keepgoing = 1;
else
keepgoing = O;

free(allatoms);

return 1;

atm2hr

Description
The atm2hr application will take simulation data files and convert them to a human

readable

format. The output is incredibly verbose and tends to be difficult to wade

through but is more informative than the binary data files.

Code

atm2hr.c

#include
#include
#include
#include

<errno.h>
<stdio.h>
"atoms.h"
"header.h"

int main(int argc, char** argv)

Headerinfo tempheader;
Atom tempatom;

FILE* filel;

FILE* file2;

int i,j,k;

char buffer[255];

if(argc < 2)
{

}

printf(*'no infile specified\n\n");
return O;

for(k=1; k<argc; k++)
{

filel = fopen(argv[k], "rb™);
if(filel == NULL)
{
printf(“"failed to open infile %s for reading\n\n", argv[k]);

return errno;

3
printf(“'using infile %s\n\n", argv[k]):;
J = (int)fread(&tempheader, sizeof(Headerinfo), 1, filel);

ifg < 1)

{
printf(“error reading header from infile\n\n");
return O;

b

sprintf(buffer, "%s._.hr", argv[k]);
file2 = fopen(buffer, "w");

56

fprintf(file2, "iterations remaining = %d\n', tempheader.iterations);
fprintf(File2, "minimum cutoff distance = %e\n", tempheader.mincutoff);
fprintf(File2, "delta time = %e\n'", tempheader.dt);

fprintf(file2, "system x size = %e\n', tempheader.bigX);

fprintf(File2, "system y size = %e\n'", tempheader.bigY);

fprintf(file2, "system z size = %e\n', tempheader.bigZ);

fprintf(file2, "number of atoms = %d\n', tempheader.numatoms);
fprintf(file2, "\n");

for(i=0; i<tempheader.numatoms; i++)

J = (int)fread(&tempatom, sizeof(Atom), 1, filel);

ifg < 1)

{
printf("error reading atom %d from infile\n\n", i);
return O;

b

fprintf(File2, "Atom #%d\n", 1);
fprintf(file2, "type = %s\n", elements[tempatom.type].symbol);

fprintf(file2, "position = <%e, %e, %e>\n'", tempatom.x, tempatom.y,

tempatom.z);
fprintf(file2, "velocity = <%e, %e, %e>\n", tempatom.vx,
tempatom.vy, tempatom.vz);
fprintf(file2, "potential = %e\n', tempatom.potential);
fprintf(File2, "\n");
}

fclose(file2);
fclose(filel);
3

return 1;

atm2pov

Description
The atm2pov application will take simulation data files and convert them to a format

which can be used by the freely available application POV-Ray (http://www.povray.org/)

to generate still images from any frame of the simulation. Although purely qualitative in

nature, the images are very useful for getting a good idea of what is going on.
Code

atm2pov.c

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include "atoms.h"
#include "header_h"

int main(int argc, char** argv)

Headerinfo tempheader;
Atom tempatom;

FILE* filel;

FILE* file2;

int i,j.k;

char buffer[255];

double sizemul;

double cutoff;

double curX, curY, curZ;

if(argc < 2)
{

printf(*'no infile specified\n\n");
return O;

57

http://www.povray.org/

for(k=1; k<argc; k++)
t filel = fopen(argv[k], "rb"™);
if(filel == NULL)
t printf(“"failed to open infile %s for reading\n\n", argv[k]);

return errno;

3
printf("'using infile %s\n\n", argv[k]):
Jj = (int)fread(&tempheader, sizeof(Headerinfo), 1, filel);

ifg < 1)

{
printf("error reading header from infile\n\n");
return O;

}

sprintf(buffer, "%s.pov", argv[k]);
file2 = fopen(buffer, "w");

sizemul = max(tempheader.bigX, max(tempheader.bigY, tempheader.bigz));
if(sizemul <= 0.0)

fprintf(file2, “crash HARD and die\n™);
fclose(file2);

fclose(Filel);

return 5;

sizemul = 1/sizemul;
cutoff = tempheader.mincutoff * sizemul;

curX = tempheader._bigX*sizemul;
curY = tempheader.bigY*sizemul;
curZ = tempheader.bigZ*sizemul;

fprintf(file2, "#include \'"colors.inc\"\n\n");

fprintf(File2, "camera {\n\tlocation <%f, %Ff, %f>\n\tlook_ at <%f, %fF,
%F>\n}\n\n", 0.1+0._5*curX, 0.7+0.5*curY, -(0.8+0.5*curZ), 0.5*curX, 0.5*curY, 0.5*curz);

fprintf(file2, "light_source { <10, 10, -10>, White }\n\n");

fprintf(File2, "background { color Black }\n\n");

fprintf(file2, “cylinder { <0.0, -0.025, -0.025>, <0.0, -0.025, -0.025> +
<%f, 0.0, 0.0>, 0.01 pigment { Green } }\n\n", 1.0E-9*sizemul);

fprintf(file2, "cylinder { <0.0, -0.025, -0.025>, <0.0, -0.025, -0.025> +
<%f, 0.0, 0.0>, 0.011 pigment { GreenCopper } }\n\n", 1_0E-10*sizemul);

fprintf(File2, "cylinder { <0.0, 0.0, 0.0>, <%f, 0.0, 0.0>, 0.002 pigment
{ Red } }\n", curX);

fprintf(File2, "cylinder { <0.0, 0.0, 0.0>, <0.0, %f, 0.0>, 0.002 pigment
{ Red } }\n", curY);

fprintf(file2, “cylinder { <0.0, 0.0, 0.0>, <0.0, 0.0, %f>, 0.002 pigment
{ Red } }\n", curz);

fprintf(file2, “cylinder { <%f, 0.0, 0.0>, <%f, 0.0, %f>, 0.002 pigment {
Red } }\n", curX, curX, curZ);

fprintf(file2, "cylinder { <%f, 0.0, 0.0>, <%f, %f, 0.0>, 0.002 pigment {
Red } }\n", curX, curX, curY);

fprintf(File2, "cylinder { <0.0, %f, 0.0>, <0.0, %Ff, %f>, 0.002 pigment {
Red } }\n", curY, curY, curZ);

fprintf(File2, "cylinder { <0.0, %f, 0.0>, <%f, %Ff, 0.0>, 0.002 pigment {
Red } }\n", curY, curX, curY);

fprintf(File2, "cylinder { <0.0, 0.0, %f>, <%f, 0.0, %f>, 0.002 pigment {
Red } }\n", curZ, curX, curZ);

fprintf(file2, “cylinder { <0.0, 0.0, %f>, <0.0, %f, %f>, 0.002 pigment {
Red } }\n", curZ, curY, curz);

fprintf(file2, “cylinder { <&f, %f, %f>, <0.0, %f, %F>, 0.002 pigment {
Red } }\n", curX, curY, curZ, curY, curz);

fprintf(File2, "cylinder { <%f, %f, %f>, <%f, 0.0, %f>, 0.002 pigment {
Red } }\n", curX, curY, curZ, curX, curZ);

fprintf(File2, "cylinder { <Wf, %F, %f>, <%f, %F, 0.0>, 0.002 pigment {
Red } }\n", curX, curY, curZ, curX, curY);

fprintf(file2, "\n\n");

58

for(i=0; i< (sizeof(elements)/sizeof(elements[0])); i++)

{
fprintf(File2, "#macro %s(center)\n", elements[i].symbol);
fprintf(file2, "\tsphere { center, %f pigment { %s } }\n",

elements[i].radius*sizemul, elements[i].pigment);

fprintf(File2, "#end\n");

bs

fprintf(file2, "\n");

for(i=0; i<tempheader.numatoms; i++)

J = (int)fread(&tempatom, sizeof(Atom), 1, filel);

ifg < 1)

{
printf("error reading atom %d from infile\n\n", i);
return 3;

3

curX = sizemul * tempatom.x;

curY = sizemul * tempatom.y;

curZ = sizemul * tempatom.z;

fprintf(File2, "%s(<%f,%f,%F>)\n",
elements[tempatom.type].symbol, curX, curY, curZ);
3

fclose(file2);
fclose(filel);

}

return 1;

59

	Table of Contents
	Abstract
	Theory
	General
	Order 0
	Order 1
	Order 2
	Order 3
	Extensions
	Polypropylene, polybutylene, etc.
	Polyvinylchloride
	Polyacetylene
	Any Polymer

	Implementation
	General
	Interactions
	Order 0
	Neighbor Lists
	Constants
	σ
	ε

	Order 1
	Constants
	x0
	k0

	Order 2
	Constants
	x0
	k0

	Order 3
	Constants
	x0
	z

	Temporal Integration
	Temperature Regulation
	Boundary Conditions
	Initial Conditions

	Results
	Future Research
	Appendix A: References
	Appendix B: Equations
	General
	Variables
	Common Equations

	Order 0 Interactions
	Interaction Potential

	Order 1 Interactions
	Interaction Potential

	Order 2 Interactions
	Interaction Potential
	Constant Derivation

	Order 3 Interactions
	Interaction Potential
	Constant Derivation

	Appendix C: Constants
	Order 0 Interactions
	Order 1 Interactions
	Order 2 Interactions
	Order 3 Interactions

	Appendix D: Figures
	Interactions
	Constant Derivations
	Order 2 Interactions
	Order 3 Interactions

	In action

	Appendix E: Implementation Code
	Headers
	Description
	Code
	atoms.h
	header.h
	types.h

	makeoutfile
	Description
	Code
	makeoutfile.h

	interact
	Description
	Code
	interact.c

	atm2hr
	Description
	Code
	atm2hr.c

	atm2pov
	Description
	Code
	atm2pov.c

